
10/22/2016 Gradient descent - Wikipedia

https://en.wikipedia.org/wiki/Gradient_descent 1/7

Illustration of gradient descent on a series of level sets.

Gradient descent
From Wikipedia, the free encyclopedia

Gradient descent is a first-order iterative optimization algorithm. To find a local minimum of a function using gradient descent, one takes steps
proportional to the negative of the gradient (or of the approximate gradient) of the function at the current point. If instead one takes steps
proportional to the positive of the gradient, one approaches a local maximum of that function; the procedure is then known as gradient ascent.

Gradient descent is also known as steepest descent, or the method of steepest descent. Gradient descent should not be confused with the
method of steepest descent for approximating integrals.
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Description
Gradient descent is based on the observation that if the multi-variable function 
is defined and differentiable in a neighborhood of a point , then  decreases
fastest if one goes from  in the direction of the negative gradient of  at , 

. It follows that, if

for  small enough, then . In other words, the term  is
subtracted from  because we want to move against the gradient, namely down
toward the minimum. With this observation in mind, one starts with a guess  for a
local minimum of , and considers the sequence  such that

We have

so hopefully the sequence  converges to the desired local minimum. Note that
the value of the step size  is allowed to change at every iteration. With certain
assumptions on the function  (for example,  convex and  Lipschitz) and
particular choices of  (e.g., chosen via a line search that satisfies the Wolfe
conditions), convergence to a local minimum can be guaranteed. When the function 

 is convex, all local minima are also global minima, so in this case gradient descent
can converge to the global solution.

This process is illustrated in the picture to the right. Here  is assumed to be defined on the plane, and that its graph has a bowl shape. The blue
curves are the contour lines, that is, the regions on which the value of  is constant. A red arrow originating at a point shows the direction of the
negative gradient at that point. Note that the (negative) gradient at a point is orthogonal to the contour line going through that point. We see that
gradient descent leads us to the bottom of the bowl, that is, to the point where the value of the function  is minimal.
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Examples

Gradient descent has problems with pathological functions such as the Rosenbrock function shown here.

The Rosenbrock function has a narrow curved valley which contains the minimum. The bottom of the valley is very flat. Because of the curved
flat valley the optimization is zig-zagging slowly with small stepsizes towards the minimum.

The "Zig-Zagging" nature of the method is also evident below, where the gradient descent method is applied to 

.

Limitations

For some of the above examples, gradient descent is relatively slow close to the minimum: technically, its asymptotic rate of convergence is
inferior to many other methods. For poorly conditioned convex problems, gradient descent increasingly 'zigzags' as the gradients point nearly
orthogonally to the shortest direction to a minimum point. For more details, see the comments below.

For non-differentiable functions, gradient methods are ill-defined. For locally Lipschitz problems and especially for convex minimization
problems, bundle methods of descent are well-defined. Non-descent methods, like subgradient projection methods, may also be used.[1] These
methods are typically slower than gradient descent. Another alternative for non-differentiable functions is to "smooth" the function, or bound the
function by a smooth function. In this approach, the smooth problem is solved in the hope that the answer is close to the answer for the non-
smooth problem (occasionally, this can be made rigorous).
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Solution of a linear system
Gradient descent can be used to solve a system of linear equations, reformulated as a quadratic minimization problem, e.g., using linear least
squares. The solution of

in the sense of linear least squares is defined as minimizing the function

In traditional linear least squares for real  and  the Euclidean norm is used, in which case

In this case, the line search minimization, finding the locally optimal step size  on every iteration, can be performed analytically, and explicit
formulas for the locally optimal  are known.[2]

For solving linear equations, gradient descent is rarely used, with the conjugate gradient method being one of the most popular alternatives. The
speed of convergence of gradient descent depends on the maximal and minimal eigenvalues of , while the speed of convergence of conjugate
gradients has a more complex dependence on the eigenvalues, and can benefit from preconditioning. Gradient descent also benefits from
preconditioning, but this is not done as commonly.

Solution of a non-linear system
Gradient descent can also be used to solve a system of nonlinear equations. Below is an example that shows how to use the gradient descent to
solve for three unknown variables, x1, x2, and x3. This example shows one iteration of the gradient descent.

Consider a nonlinear system of equations:

suppose we have the function

where

and the objective function

With initial guess

We know that
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An animation showing the first 83 iterations of gradient
descent applied to this example. Surfaces are isosurfaces of 

 at current guess , and arrows show the direction
of descent. Due to a small and constant step size, the
convergence is slow.

where

The Jacobian matrix 

Then evaluating these terms at 

So that

and

Now a suitable  must be found such that . This can be done
with any of a variety of line search algorithms. One might also simply guess 

 which gives

Evaluating at this value,

The decrease from  to the next step's value of 
is a sizable decrease in the objective function. Further steps would reduce its value
until a solution to the system was found.

Comments
Gradient descent works in spaces of any number of dimensions, even in infinite-
dimensional ones. In the latter case the search space is typically a function space, and one calculates the Gâteaux derivative of the functional to
be minimized to determine the descent direction.[3]

The gradient descent can take many iterations to compute a local minimum with a required accuracy, if the curvature in different directions is
very different for the given function. For such functions, preconditioning, which changes the geometry of the space to shape the function level
sets like concentric circles, cures the slow convergence. Constructing and applying preconditioning can be computationally expensive, however.

The gradient descent can be combined with a line search, finding the locally optimal step size  on every iteration. Performing the line search
can be time-consuming. Conversely, using a fixed small  can yield poor convergence.

Methods based on Newton's method and inversion of the Hessian using conjugate gradient techniques can be better alternatives.[4][5] Generally,
such methods converge in fewer iterations, but the cost of each iteration is higher. An example is the BFGS method which consists in calculating
on every step a matrix by which the gradient vector is multiplied to go into a "better" direction, combined with a more sophisticated line search
algorithm, to find the "best" value of  For extremely large problems, where the computer memory issues dominate, a limited-memory method
such as L-BFGS should be used instead of BFGS or the steepest descent.
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Gradient descent can be viewed as Euler's method for solving ordinary differential equations  of a gradient flow.

Computational examples

Python

The gradient descent algorithm is applied to find a local minimum of the function f(x)=x4−3x3+2, with derivative f'(x)=4x3−9x2. Here is an
implementation in the Python programming language.

# From calculation, it is expected that the local minimum occurs at x=9/4

x_old = 0 # The value does not matter as long as abs(x_new - x_old) > precision
x_new = 6 # The algorithm starts at x=6
gamma = 0.01 # step size
precision = 0.00001

def df(x):
    y = 4 * x**3 - 9 * x**2
    return y

while abs(x_new - x_old) > precision:
    x_old = x_new
    x_new += -gamma * df(x_old)

print("The local minimum occurs at ", +x_new)

The above piece of code has to be modified with regard to step size according to the system at hand and convergence can be made faster by
using an adaptive step size. In the above case the step size is not adaptive. It stays at 0.01 in all the directions which can sometimes cause the
method to fail by diverging from the minimum.

MATLAB

The following MATLAB code demonstrates a concrete solution for solving the non-linear system of equations presented in the previous section:

% Multi-variate vector-valued function G(x)
G = @(x) [
    3*x(1) - cos(x(2)*x(3)) - 3/2           ;
    4*x(1)̂2 - 625*x(2)̂2 + 2*x(2) - 1      ;
    exp(-x(1)*x(2)) + 20*x(3) + (10*pi-3)/3];

% Jacobian of G
JG = @(x) [
    3,                     sin(x(2)*x(3))*x(3),   sin(x(2)*x(3))*x(2) ;
    8*x(1),                -1250*x(2)+2,          0                   ;
    -x(2)*exp(-x(1)*x(2)), -x(1)*exp(-x(1)*x(2)), 20                 ];

% Objective function F(x) to minimize in order to solve G(x)=0
F = @(x) 0.5 * sum(G(x).̂2);

% Gradient of F (partial derivatives)
dF = @(x) JG(x).' * G(x);

% Parameters
GAMMA = 0.001;    % step size (learning rate)
MAX_ITER = 1000;  % maximum number of iterations
FUNC_TOL = 0.1;   % termination tolerance for F(x)

fvals = [];       % store F(x) values across iterations
progress = @(iter,x) fprintf('iter = %3d: x = %-32s, F(x) = %f\n', ...
    iter, mat2str(x,6), F(x));

% Iterate
iter = 1;         % iterations counter
x = [0; 0; 0];    % initial guess
fvals(iter) = F(x);
progress(iter, x);
while iter < MAX_ITER && fvals(end) > FUNC_TOL
    iter = iter + 1;
    x = x - GAMMA * dF(x);  % gradient descent
    fvals(iter) = F(x);     % evaluate objective function
    progress(iter, x);      % show progress
end

% Plot
plot(1:iter, fvals, 'LineWidth',2); grid on;
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title('Objective Function'); xlabel('Iteration'); ylabel('F(x)');

% Evaluate final solution of system of equations G(x)=0
disp('G(x) = '); disp(G(x))

% Output:
%
% iter =   1: x = [0;0;0]                         , F(x) = 58.456136
% iter =   2: x = [0.0075;0.002;-0.20944]         , F(x) = 23.306394
% iter =   3: x = [0.015005;0.0015482;-0.335103]  , F(x) = 10.617030
% ...
% iter = 187: x = [0.683335;0.0388258;-0.52231]   , F(x) = 0.101161
% iter = 188: x = [0.684666;0.0389831;-0.522302]  , F(x) = 0.099372
%
% (converged in 188 iterations after exceeding termination tolerance for F(x))

Extensions
Gradient descent can be extended to handle constraints by including a projection onto the set of constraints. This method is only feasible when
the projection is efficiently computable on a computer. Under suitable assumptions, this method converges. This method is a specific case of the
forward-backward algorithm for monotone inclusions (which includes convex programming and variational inequalities).[6]

Fast gradient methods

Another extension of gradient descent is due to Yurii Nesterov from 1983,[7] and has been subsequently generalized. He provides a simple
modification of the algorithm that enables faster convergence for convex problems. For unconstrained smooth problems the method is called the
Fast Gradient Method (FGM) or the Accelerated Gradient Method (AGM). Specifically, if the differentiable function  is convex and  is
Lipschitz, and it is not assumed that  is strongly convex, then the error in the objective value generated at each step  by the gradient descent
method will be bounded by . Using the Nesterov acceleration technique, the error decreases at .[8] It is known that the rate 

 for the decrease of the cost function is optimal for first-order optimization methods. Nevertheless there is the opportunity to improve
the algorithm by reducing the constant factor. The optimized gradient method (OGM) [9] reduces that constant by a factor of two and is an
optimal first-order method for large-scale problems. [10]

For constrained or non-smooth problems Nesterov's FGM is called the fast proximal gradient method (FPGM), an acceleration of the Proximal
gradient method.

The momentum method

Yet another extension, that reduces the risk of getting stuck in a local minimum, as well as speeds up the convergence considerably in cases
where the process would otherwise zig-zag heavily, is the momentum method, which uses a momentum term in analogy to "the mass of
Newtonian particles that move through a viscous medium in a conservative force field".[11] This method is often used as an extension to the
backpropagation algorithms used to train artificial neural networks.[12][13]

See also
Conjugate gradient method
Stochastic gradient descent
Rprop
Delta rule
Wolfe conditions
Preconditioning
BFGS method
Nelder–Mead method
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